Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chest ; 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38295949

RESUMEN

BACKGROUND: Positive end-expiratory pressure (PEEP) can potentially modulate inspiratory effort (ΔPes), which is the major determinant of self-inflicted lung injury. RESEARCH QUESTION: Does high PEEP reduce ΔPes in patients with moderate-to-severe ARDS on assisted ventilation? STUDY DESIGN AND METHODS: Sixteen patients with Pao2/Fio2 ≤ 200 mm Hg and ΔPes ≥ 10 cm H2O underwent a randomized sequence of four ventilator settings: PEEP = 5 cm H2O or PEEP = 15 cm H2O + synchronous (pressure support ventilation [PSV]) or asynchronous (pressure-controlled intermittent mandatory ventilation [PC-IMV]) inspiratory assistance. ΔPes and respiratory system, lung, and chest wall mechanics were assessed with esophageal manometry and occlusions. PEEP-induced alveolar recruitment and overinflation, lung dynamic strain, and tidal volume distribution were assessed with electrical impedance tomography. RESULTS: ΔPes was not systematically different at high vs low PEEP (pressure support ventilation: median, 20 cm H2O; interquartile range (IQR), 15-24 cm H2O vs median, 15 cm H2O; IQR, 13-23 cm H2O; P = .24; pressure-controlled intermittent mandatory ventilation: median, 20; IQR, 18-23 vs median, 19; IQR, 17-25; P = .67, respectively). Similarly, respiratory system and transpulmonary driving pressures, tidal volume, lung/chest wall mechanics, and pendelluft extent were not different between study phases. High PEEP resulted in lower or higher ΔPes, respiratory system driving pressure, and transpulmonary driving pressure according to whether this increased or decreased respiratory system compliance (r = -0.85, P < .001; r = -0.75, P < .001; r = -0.80, P < .001, respectively). PEEP-induced changes in respiratory system compliance were driven by its lung component and were dependent on the extent of PEEP-induced alveolar overinflation (r = -0.66, P = .006). High PEEP caused variable recruitment and systematic redistribution of tidal volume toward dorsal lung regions, thereby reducing dynamic strain in ventral areas (pressure support ventilation: median, 0.49; IQR, 0.37-0.83 vs median, 0.96; IQR, 0.62-1.56; P = .003; pressure-controlled intermittent mandatory ventilation: median, 0.65; IQR, 0.42-1.31 vs median, 1.14; IQR, 0.79-1.52; P = .002). All results were consistent during synchronous and asynchronous inspiratory assistance. INTERPRETATION: The impact of high PEEP on ΔPes and lung stress is interindividually variable according to different effects on the respiratory system and lung compliance resulting from alveolar overinflation. High PEEP may help mitigate the risk of self-inflicted lung injury solely if it increases lung/respiratory system compliance. TRIAL REGISTRATION: ClinicalTrials.gov; No.: NCT04241874; URL: www. CLINICALTRIALS: gov.

2.
J Clin Med ; 12(24)2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38137598

RESUMEN

Intensive Care Unit (ICU)-Acquired Weakness (ICU-AW) is a generalized muscle weakness that is clinically detected in critical patients and has no plausible etiology other than critical illness. ICU-AW is uncommon in patients undergoing orthotopic liver transplantation (OLT). Our report sheds light on the highest number of ICU-AW cases observed in a single center on OLT patients with early allograft dysfunction. Out of 282 patients who underwent OLT from January 2015 to June 2023, 7 (2.5%) developed generalized muscle weakness in the ICU and underwent neurophysiological investigations. The neurologic examination showed preserved extraocular, flaccid quadriplegia with the absence of deep tendon reflexes in all patients. Neurophysiological studies, including electromyography and nerve conduction studies, showed abnormalities with fibrillation potentials and the rapid recruitment of small polyphasic motor units in the examined muscles, as well as a reduced amplitude of the compound muscle action potential and sensory nerve action potential, with an absence of demyelinating features. Pre-transplant clinical status was critical in all patients. During ICU stay, early allograft dysfunction, acute kidney injury, prolonged mechanical ventilation, sepsis, hyperglycemia, and high blood transfusions were observed in all patients. Two patients were retransplanted. Five patients were alive at 90 days; two patients died. In non-cooperative OLT patients, neurophysiological investigations are essential for the diagnosis of ICU-AW. In this setting, the high number of red blood cell transfusions is a potential risk factor for ICU-AW.

3.
Crit Care ; 27(1): 315, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37592288

RESUMEN

BACKGROUND: The effects of awake prone position on the breathing pattern of hypoxemic patients need to be better understood. We conducted a crossover trial to assess the physiological effects of awake prone position in patients with acute hypoxemic respiratory failure. METHODS: Fifteen patients with acute hypoxemic respiratory failure and PaO2/FiO2 < 200 mmHg underwent high-flow nasal oxygen for 1 h in supine position and 2 h in prone position, followed by a final 1-h supine phase. At the end of each study phase, the following parameters were measured: arterial blood gases, inspiratory effort (ΔPES), transpulmonary driving pressure (ΔPL), respiratory rate and esophageal pressure simplified pressure-time product per minute (sPTPES) by esophageal manometry, tidal volume (VT), end-expiratory lung impedance (EELI), lung compliance, airway resistance, time constant, dynamic strain (VT/EELI) and pendelluft extent through electrical impedance tomography. RESULTS: Compared to supine position, prone position increased PaO2/FiO2 (median [Interquartile range] 104 mmHg [76-129] vs. 74 [69-93], p < 0.001), reduced respiratory rate (24 breaths/min [22-26] vs. 27 [26-30], p = 0.05) and increased ΔPES (12 cmH2O [11-13] vs. 9 [8-12], p = 0.04) with similar sPTPES (131 [75-154] cmH2O s min-1 vs. 105 [81-129], p > 0.99) and ΔPL (9 [7-11] cmH2O vs. 8 [5-9], p = 0.17). Airway resistance and time constant were higher in prone vs. supine position (9 cmH2O s arbitrary units-3 [4-11] vs. 6 [4-9], p = 0.05; 0.53 s [0.32-61] vs. 0.40 [0.37-0.44], p = 0.03). Prone position increased EELI (3887 arbitrary units [3414-8547] vs. 1456 [959-2420], p = 0.002) and promoted VT distribution towards dorsal lung regions without affecting VT size and lung compliance: this generated lower dynamic strain (0.21 [0.16-0.24] vs. 0.38 [0.30-0.49], p = 0.004). The magnitude of pendelluft phenomenon was not different between study phases (55% [7-57] of VT in prone vs. 31% [14-55] in supine position, p > 0.99). CONCLUSIONS: Prone position improves oxygenation, increases EELI and promotes VT distribution towards dependent lung regions without affecting VT size, ΔPL, lung compliance and pendelluft magnitude. Prone position reduces respiratory rate and increases ΔPES because of positional increases in airway resistance and prolonged expiratory time. Because high ΔPES is the main mechanistic determinant of self-inflicted lung injury, caution may be needed in using awake prone position in patients exhibiting intense ΔPES. Clinical trail registeration: The study was registered on clinicaltrials.gov (NCT03095300) on March 29, 2017.


Asunto(s)
Insuficiencia Respiratoria , Vigilia , Humanos , Posición Prona , Respiración , Insuficiencia Respiratoria/terapia , Volumen de Ventilación Pulmonar , Estudios Cruzados
4.
J Clin Med ; 12(13)2023 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-37445211

RESUMEN

Acute respiratory distress syndrome (ARDS) is a leading cause of disability and mortality worldwide, and while no specific etiologic interventions have been shown to improve outcomes, noninvasive and invasive respiratory support strategies are life-saving interventions that allow time for lung recovery. However, the inappropriate management of these strategies, which neglects the unique features of respiratory, lung, and chest wall mechanics may result in disease progression, such as patient self-inflicted lung injury during spontaneous breathing or by ventilator-induced lung injury during invasive mechanical ventilation. ARDS characteristics are highly heterogeneous; therefore, a physiology-based approach is strongly advocated to titrate the delivery and management of respiratory support strategies to match patient characteristics and needs to limit ARDS progression. Several tools have been implemented in clinical practice to aid the clinician in identifying the ARDS sub-phenotypes based on physiological peculiarities (inspiratory effort, respiratory mechanics, and recruitability), thus allowing for the appropriate application of personalized supportive care. In this narrative review, we provide an overview of noninvasive and invasive respiratory support strategies, as well as discuss how identifying ARDS sub-phenotypes in daily practice can help clinicians to deliver personalized respiratory support and potentially improve patient outcomes.

5.
J Intensive Care ; 11(1): 21, 2023 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-37208787

RESUMEN

BACKGROUND: Long-term outcomes of patients treated with helmet noninvasive ventilation (NIV) are unknown: safety concerns regarding the risk of patient self-inflicted lung injury and delayed intubation exist when NIV is applied in hypoxemic patients. We assessed the 6-month outcome of patients who received helmet NIV or high-flow nasal oxygen for COVID-19 hypoxemic respiratory failure. METHODS: In this prespecified analysis of a randomized trial of helmet NIV versus high-flow nasal oxygen (HENIVOT), clinical status, physical performance (6-min-walking-test and 30-s chair stand test), respiratory function and quality of life (EuroQoL five dimensions five levels questionnaire, EuroQoL VAS, SF36 and Post-Traumatic Stress Disorder Checklist for the DSM) were evaluated 6 months after the enrollment. RESULTS: Among 80 patients who were alive, 71 (89%) completed the follow-up: 35 had received helmet NIV, 36 high-flow oxygen. There was no inter-group difference in any item concerning vital signs (N = 4), physical performance (N = 18), respiratory function (N = 27), quality of life (N = 21) and laboratory tests (N = 15). Arthralgia was significantly lower in the helmet group (16% vs. 55%, p = 0.002). Fifty-two percent of patients in helmet group vs. 63% of patients in high-flow group had diffusing capacity of the lungs for carbon monoxide < 80% of predicted (p = 0.44); 13% vs. 22% had forced vital capacity < 80% of predicted (p = 0.51). Both groups reported similar degree of pain (p = 0.81) and anxiety (p = 0.81) at the EQ-5D-5L test; the EQ-VAS score was similar in the two groups (p = 0.27). Compared to patients who successfully avoided invasive mechanical ventilation (54/71, 76%), intubated patients (17/71, 24%) had significantly worse pulmonary function (median diffusing capacity of the lungs for carbon monoxide 66% [Interquartile range: 47-77] of predicted vs. 80% [71-88], p = 0.005) and decreased quality of life (EQ-VAS: 70 [53-70] vs. 80 [70-83], p = 0.01). CONCLUSIONS: In patients with COVID-19 hypoxemic respiratory failure, treatment with helmet NIV or high-flow oxygen yielded similar quality of life and functional outcome at 6 months. The need for invasive mechanical ventilation was associated with worse outcomes. These data indicate that helmet NIV, as applied in the HENIVOT trial, can be safely used in hypoxemic patients. Trial registration Registered on clinicaltrials.gov NCT04502576 on August 6, 2020.

6.
J Intensive Med ; 3(1): 11-19, 2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36785582

RESUMEN

Optimal initial non-invasive management of acute hypoxemic respiratory failure (AHRF), of both coronavirus disease 2019 (COVID-19) and non-COVID-19 etiologies, has been the subject of significant discussion. Avoidance of endotracheal intubation reduces related complications, but maintenance of spontaneous breathing with intense respiratory effort may increase risks of patients' self-inflicted lung injury, leading to delayed intubation and worse clinical outcomes. High-flow nasal oxygen is currently recommended as the optimal strategy for AHRF management for its simplicity and beneficial physiological effects. Non-invasive ventilation (NIV), delivered as either pressure support or continuous positive airway pressure via interfaces like face masks and helmets, can improve oxygenation and may be associated with reduced endotracheal intubation rates. However, treatment failure is common and associated with poor outcomes. Expertise and knowledge of the specific features of each interface are necessary to fully exploit their potential benefits and minimize risks. Strict clinical and physiological monitoring is necessary during any treatment to avoid delays in endotracheal intubation and protective ventilation. In this narrative review, we analyze the physiological benefits and risks of spontaneous breathing in AHRF, and the characteristics of tools for delivering NIV. The goal herein is to provide a contemporary, evidence-based overview of this highly relevant topic.

7.
Expert Rev Respir Med ; 17(1): 27-39, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36710082

RESUMEN

INTRODUCTION: Non-invasive ventilation (NIV) represents an effective strategy for managing acute respiratory failure. Facemask NIV is strongly recommended in acute exacerbation of chronic obstructive pulmonary disease (AECOPD) with hypercapnia and acute cardiogenic pulmonary edema (ACPE). Its role in managing acute hypoxemic respiratory failure (AHRF) remains a debated issue. NIV and continuous positive airway pressure (CPAP) delivered through the helmet are recently receiving growing interest for AHRF management. AREAS COVERED: In this narrative review, we discuss the clinical applications of helmet support compared to the other available noninvasive strategies in the different phenotypes of acute respiratory failure. EXPERT OPINION: Helmets enable the use of high positive end-expiratory pressure, which may protect from self-inflicted lung injury: in AHRF, the possible superiority of helmet support over other noninvasive strategies in terms of clinical outcome has been hypothesized in a network metanalysis and a randomized trial, but has not been confirmed by other investigations and warrants confirmation. In AECOPD patients, helmet efficacy may be inferior to that of face masks, and its use prompts caution due to the risk of CO2 rebreathing. Helmet support can be safely applied in hypoxemic patients with ACPE, with no advantages over facemasks.


Asunto(s)
Ventilación no Invasiva , Enfermedad Pulmonar Obstructiva Crónica , Edema Pulmonar , Insuficiencia Respiratoria , Humanos , Dispositivos de Protección de la Cabeza/efectos adversos , Respiración con Presión Positiva , Ventilación no Invasiva/efectos adversos , Insuficiencia Respiratoria/terapia , Enfermedad Pulmonar Obstructiva Crónica/terapia , Ensayos Clínicos Controlados Aleatorios como Asunto
8.
Am J Respir Crit Care Med ; 207(10): 1310-1323, 2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-36378814

RESUMEN

Rationale: The respective effects of positive end-expiratory pressure (PEEP) and pressure support delivered through the helmet interface in patients with hypoxemia need to be better understood. Objectives: To assess the respective effects of helmet pressure support (noninvasive ventilation [NIV]) and continuous positive airway pressure (CPAP) compared with high-flow nasal oxygen (HFNO) on effort to breathe, lung inflation, and gas exchange in patients with hypoxemia (PaO2/FiO2 ⩽ 200). Methods: Fifteen patients underwent 1-hour phases (constant FiO2) of HFNO (60 L/min), helmet NIV (PEEP = 14 cm H2O, pressure support = 12 cm H2O), and CPAP (PEEP = 14 cm H2O) in randomized sequence. Measurements and Main Results: Inspiratory esophageal (ΔPES) and transpulmonary pressure (ΔPL) swings were used as surrogates for inspiratory effort and lung distension, respectively. Tidal Volume (Vt) and end-expiratory lung volume were assessed with electrical impedance tomography. ΔPES was lower during NIV versus CPAP and HFNO (median [interquartile range], 5 [3-9] cm H2O vs. 13 [10-19] cm H2O vs. 10 [8-13] cm H2O; P = 0.001 and P = 0.01). ΔPL was not statistically different between treatments. PaO2/FiO2 ratio was significantly higher during NIV and CPAP versus HFNO (166 [136-215] and 175 [158-281] vs. 120 [107-149]; P = 0.002 and P = 0.001). NIV and CPAP similarly increased Vt versus HFNO (mean change, 70% [95% confidence interval (CI), 17-122%], P = 0.02; 93% [95% CI, 30-155%], P = 0.002) and end-expiratory lung volume (mean change, 198% [95% CI, 67-330%], P = 0.001; 263% [95% CI, 121-407%], P = 0.001), mostly due to increased aeration/ventilation in dorsal lung regions. During HFNO, 14 of 15 patients had pendelluft involving >10% of Vt; pendelluft was mitigated by CPAP and further by NIV. Conclusions: Compared with HFNO, helmet NIV, but not CPAP, reduced ΔPES. CPAP and NIV similarly increased oxygenation, end-expiratory lung volume, and Vt, without affecting ΔPL. NIV, and to a lesser extent CPAP, mitigated pendelluft. Clinical trial registered with clinicaltrials.gov (NCT04241861).


Asunto(s)
Ventilación no Invasiva , Insuficiencia Respiratoria , Humanos , Presión de las Vías Aéreas Positiva Contínua , Insuficiencia Respiratoria/terapia , Pulmón , Ventilación no Invasiva/métodos , Hipoxia/terapia
9.
Ann Intensive Care ; 12(1): 94, 2022 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-36241926

RESUMEN

INTRODUCTION: Helmet noninvasive support may provide advantages over other noninvasive oxygenation strategies in the management of acute hypoxemic respiratory failure. In this narrative review based on a systematic search of the literature, we summarize the rationale, mechanism of action and technicalities for helmet support in hypoxemic patients. MAIN RESULTS: In hypoxemic patients, helmet can facilitate noninvasive application of continuous positive-airway pressure or pressure-support ventilation via a hood interface that seals at the neck and is secured by straps under the arms. Helmet use requires specific settings. Continuous positive-airway pressure is delivered through a high-flow generator or a Venturi system connected to the inspiratory port of the interface, and a positive end-expiratory pressure valve place at the expiratory port of the helmet;  alternatively, pressure-support ventilation is delivered by connecting the helmet to a mechanical ventilator through a bi-tube circuit. The helmet interface allows continuous treatments with high positive end-expiratory pressure with good patient comfort. Preliminary data suggest that helmet noninvasive ventilation (NIV) may provide physiological benefits compared to other noninvasive oxygenation strategies (conventional oxygen, facemask NIV, high-flow nasal oxygen) in non-hypercapnic patients with moderate-to-severe hypoxemia (PaO2/FiO2 ≤ 200 mmHg), possibly because higher positive end-expiratory pressure (10-15 cmH2O) can be applied for prolonged periods with good tolerability. This improves oxygenation, limits ventilator inhomogeneities, and may attenuate the potential harm of lung and diaphragm injury caused by vigorous inspiratory effort. The potential superiority of helmet support for reducing the risk of intubation has been hypothesized in small, pilot randomized trials and in a network metanalysis. CONCLUSIONS: Helmet noninvasive support represents a promising tool for the initial management of patients with severe hypoxemic respiratory failure. Currently, the lack of confidence with this and technique and the absence of conclusive data regarding its efficacy render helmet use limited to specific settings, with expert and trained personnel. As per other noninvasive oxygenation strategies, careful clinical and physiological monitoring during the treatment is essential to early identify treatment failure and avoid delays in intubation.

10.
Antibiotics (Basel) ; 11(3)2022 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-35326768

RESUMEN

Machine learning and cluster analysis applied to the clinical setting of an intensive care unit can be a valuable aid for clinical management, especially with the increasing complexity of clinical monitoring. Providing a method to measure clinical experience, a proxy for that automatic gestalt evaluation that an experienced clinician sometimes effortlessly, but often only after long, hard consideration and consultation with colleagues, relies upon for decision making, is what we wanted to achieve with the application of machine learning to antibiotic therapy and clinical monitoring in the present work. This is a single-center retrospective analysis proposing methods for evaluation of vitals and antimicrobial therapy in intensive care patients. For each patient included in the present study, duration of antibiotic therapy, consecutive days of treatment and type and combination of antimicrobial agents have been assessed and considered as single unique daily record for analysis. Each parameter, composing a record was normalized using a fuzzy logic approach and assigned to five descriptive categories (fuzzy domain sub-sets ranging from "very low" to "very high"). Clustering of these normalized therapy records was performed, and each patient/day was considered to be a pertaining cluster. The same methodology was used for hourly bed-side monitoring. Changes in patient conditions (monitoring) can lead to a shift of clusters. This can provide an additional tool for assessing progress of complex patients. We used Fuzzy logic normalization to descriptive categories of parameters as a form nearer to human language than raw numbers.

11.
Ann Intensive Care ; 11(1): 184, 2021 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-34952962

RESUMEN

BACKGROUND: There is growing interest towards the use of helmet noninvasive ventilation (NIV) for the management of acute hypoxemic respiratory failure. Gas conditioning through heat and moisture exchangers (HME) or heated humidifiers (HHs) is needed during facemask NIV to provide a minimum level of humidity in the inspired gas (15 mg H2O/L). The optimal gas conditioning strategy during helmet NIV remains to be established. METHODS: Twenty patients with acute hypoxemic respiratory failure (PaO2/FiO2 < 300 mmHg) underwent consecutive 1-h periods of helmet NIV (PEEP 12 cmH2O, pressure support 12 cmH2O) with four humidification settings, applied in a random order: double-tube circuit with HHs and temperature set at 34 °C (HH34) and 37 °C (HH37); Y-piece circuit with HME; double-tube circuit with no humidification (NoH). Temperature and humidity of inhaled gas were measured through a capacitive hygrometer. Arterial blood gases, discomfort and dyspnea through visual analog scales (VAS), esophageal pressure swings (ΔPES) and simplified pressure-time product (PTPES), dynamic transpulmonary driving pressure (ΔPL) and asynchrony index were measured in each step. RESULTS: Median [IqR] absolute humidity, temperature and VAS discomfort were significantly lower during NoH vs. HME, HH34 and HH37: absolute humidity (mgH2O/L) 16 [12-19] vs. 28 [23-31] vs. 28 [24-31] vs. 33 [29-38], p < 0.001; temperature (°C) 29 [28-30] vs. 30 [29-31] vs. 31 [29-32] vs 32. [31-33], p < 0.001; VAS discomfort 4 [2-6] vs. 6 [2-7] vs. 7 [4-8] vs. 8 [4-10], p = 0.03. VAS discomfort increased with higher absolute humidity (p < 0.01) and temperature (p = 0.007). Higher VAS discomfort was associated with increased VAS dyspnea (p = 0.001). Arterial blood gases, respiratory rate, ΔPES, PTPES and ΔPL were similar in all conditions. Overall asynchrony index was similar in all steps, but autotriggering rate was lower during NoH and HME (p = 0.03). CONCLUSIONS: During 1-h sessions of helmet NIV in patients with hypoxemic respiratory failure, a double-tube circuit with no humidification allowed adequate conditioning of inspired gas, optimized comfort and improved patient-ventilator interaction. Use of HHs or HME in this setting resulted in increased discomfort due to excessive heat and humidity in the interface, which was associated with more intense dyspnea. Trail Registration Registered on clinicaltrials.gov (NCT02875379) on August 23rd, 2016.

12.
Respir Care ; 66(5): 705-714, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33653913

RESUMEN

BACKGROUND: The efficacy of noninvasive oxygenation strategies (NIOS) in treating COVID-19 disease is unknown. We conducted a prospective observational study to assess the rate of NIOS failure in subjects treated in the ICU for hypoxemic respiratory failure due to COVID-19. METHODS: Patients receiving first-line treatment NIOS for hypoxemic respiratory failure due to COVID-19 in the ICU of a university hospital were included in this study; laboratory data were collected upon arrival, and 28-d outcome was recorded. After propensity score matching based on Simplified Acute Physiology (SAPS) II score, age, [Formula: see text] and [Formula: see text] at arrival, the NIOS failure rate in subjects with COVID-19 was compared to a previously published cohort who received NIOS during hypoxemic respiratory failure due to other causes. RESULTS: A total of 85 subjects received first-line treatment with NIOS. The most frequently used methods were helmet noninvasive ventilation and high-flow nasal cannula; of these, 52 subjects (61%) required endotracheal intubation. Independent factors associated with NIOS failure were SAPS II score (P = .009) and serum lactate dehydrogenase at enrollment (P = .02); the combination of SAPS II score ≥ 33 with serum lactate dehydrogenase ≥ 405 units/L at ICU admission had 91% specificity in predicting the need for endotracheal intubation. In the propensity-matched cohorts (54 pairs), subjects with COVID-19 showed higher risk of NIOS failure than those with other causes of hypoxemic respiratory failure (59% vs 35%, P = .02), with an adjusted hazard ratio of 2 (95% CI 1.1-3.6, P = .01). CONCLUSIONS: As compared to hypoxemic respiratory failure due to other etiologies, subjects with COVID-19 who were treated with NIOS in the ICU were burdened by a 2-fold higher risk of failure. Subjects with a SAPS II score ≥ 33 and serum lactate dehydrogenase ≥ 405 units/L represent the population with the greatest risk.


Asunto(s)
COVID-19 , Ventilación no Invasiva , Insuficiencia Respiratoria , Enfermedad Crítica , Humanos , Hipoxia/etiología , Hipoxia/terapia , Insuficiencia Respiratoria/etiología , Insuficiencia Respiratoria/terapia , SARS-CoV-2
13.
Crit Care ; 24(1): 529, 2020 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-32859264

RESUMEN

BACKGROUND: Whether respiratory physiology of COVID-19-induced respiratory failure is different from acute respiratory distress syndrome (ARDS) of other etiologies is unclear. We conducted a single-center study to describe respiratory mechanics and response to positive end-expiratory pressure (PEEP) in COVID-19 ARDS and to compare COVID-19 patients to matched-control subjects with ARDS from other causes. METHODS: Thirty consecutive COVID-19 patients admitted to an intensive care unit in Rome, Italy, and fulfilling moderate-to-severe ARDS criteria were enrolled within 24 h from endotracheal intubation. Gas exchange, respiratory mechanics, and ventilatory ratio were measured at PEEP of 15 and 5 cmH2O. A single-breath derecruitment maneuver was performed to assess recruitability. After 1:1 matching based on PaO2/FiO2, FiO2, PEEP, and tidal volume, COVID-19 patients were compared to subjects affected by ARDS of other etiologies who underwent the same procedures in a previous study. RESULTS: Thirty COVID-19 patients were successfully matched with 30 ARDS from other etiologies. At low PEEP, median [25th-75th percentiles] PaO2/FiO2 in the two groups was 119 mmHg [101-142] and 116 mmHg [87-154]. Average compliance (41 ml/cmH2O [32-52] vs. 36 ml/cmH2O [27-42], p = 0.045) and ventilatory ratio (2.1 [1.7-2.3] vs. 1.6 [1.4-2.1], p = 0.032) were slightly higher in COVID-19 patients. Inter-individual variability (ratio of standard deviation to mean) of compliance was 36% in COVID-19 patients and 31% in other ARDS. In COVID-19 patients, PaO2/FiO2 was linearly correlated with respiratory system compliance (r = 0.52 p = 0.003). High PEEP improved PaO2/FiO2 in both cohorts, but more remarkably in COVID-19 patients (p = 0.005). Recruitability was not different between cohorts (p = 0.39) and was highly inter-individually variable (72% in COVID-19 patients and 64% in ARDS from other causes). In COVID-19 patients, recruitability was independent from oxygenation and respiratory mechanics changes due to PEEP. CONCLUSIONS: Early after establishment of mechanical ventilation, COVID-19 patients follow ARDS physiology, with compliance reduction related to the degree of hypoxemia, and inter-individually variable respiratory mechanics and recruitability. Physiological differences between ARDS from COVID-19 and other causes appear small.


Asunto(s)
Infecciones por Coronavirus/fisiopatología , Neumonía Viral/fisiopatología , Síndrome de Dificultad Respiratoria/fisiopatología , Anciano , Betacoronavirus , COVID-19 , Infecciones por Coronavirus/terapia , Femenino , Humanos , Unidades de Cuidados Intensivos , Italia , Masculino , Persona de Mediana Edad , Pandemias , Neumonía Viral/terapia , Respiración con Presión Positiva , Síndrome de Dificultad Respiratoria/terapia , Pruebas de Función Respiratoria , Mecánica Respiratoria/fisiología , SARS-CoV-2
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...